You are here

IsomiR

isomiR is a term created by Morin et al. to refer to those sequences that have variations with respect to the reference MiRNA sequence. [Source: Wikipedia]

isomiRID

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) have been extensively studied owing to their important regulatory roles in genic expression. An increasingly number of reports are performing extensive data mining in small RNA sequencing libraries to detect miRNAs isoforms and also 5' and 3' post-transcriptional nucleotide additions, as well as edited miRNAs sequences. A ready to use pipeline, isomiRID, was developed to standardize and automatize the search for miRNAs isoforms in high-throughput small RNA sequencing libraries.

Rating: 
Average: 5 (1 vote)

E-miR

Submitted by ChenLiang on Thu, 04/06/2017 - 19:39

MicroRNAs are small non-coding RNA transcripts that regulate post-transcriptional gene expression. The millions of short sequence reads generated by next generation sequencing technologies make this technique explicitly suitable for profiling of known and novel microRNAs. A modification to the small-RNA expression kit (SREK, Ambion) library preparation method for the SOLiD sequencing platform is described to generate microRNA sequencing libraries that are compatible with the Illumina Genome Analyzer.

Rating: 
Average: 5 (1 vote)

miR-isomiRExp

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNA (miRNA) locus has been found that can generate a series of varied isomiR sequences. Most studies always focus on determining miRNA level, however, the canonical miRNA sequence is only a specific member in the multiple isomiRs. Some studies have shown that isomiR sequences play versatile roles in biological progress, and the analysis and research should be simultaneously performed at the miRNA/isomiR levels.

Rating: 
4
Average: 4 (2 votes)

MIRPIPE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs regulating gene expression in eukaryotes. Present algorithms typically rely on genomic data to identify miRNAs and require extensive installation procedures. Niche model organisms lacking genomic sequences cannot be analyzed by such tools. Here we introduce the MIRPIPE application enabling rapid and simple browser-based miRNA homology detection and quantification.

Rating: 
Average: 5 (1 vote)

DeAnnIso

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNA (sRNA) Sequencing technology has revealed that microRNAs (miRNAs) are capable of exhibiting frequent variations from their canonical sequences, generating multiple variants: the isoforms of miRNAs (isomiRs). However, integrated tool to precisely detect and systematically annotate isomiRs from sRNA sequencing data is still in great demand. Here, we present an online tool, DeAnnIso (Detection and Annotation of IsomiRs from sRNA sequencing data).

Rating: 
5
Average: 4.5 (2 votes)

isomiR-SEA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Massive parallel sequencing of transcriptomes, revealed the presence of many miRNAs and miRNAs variants named isomiRs with a potential role in several cellular processes through their interaction with a target mRNA. Many methods and tools have been recently devised to detect and quantify miRNAs from sequencing data. However, all of them are implemented on top of general purpose alignment methods, thus providing poorly accurate results and no information concerning isomiRs and conserved miRNA-mRNA interaction sites.

Rating: 
5
Average: 4.5 (2 votes)

miRquant

Submitted by ChenLiang on Thu, 04/06/2017 - 19:35

Small non-coding RNAs, in particular microRNAs, are critical for normal physiology and are candidate biomarkers, regulators, and therapeutic targets for a wide variety of diseases. There is an ever-growing interest in the comprehensive and accurate annotation of microRNAs across diverse cell types, conditions, species, and disease states. Highthroughput sequencing technology has emerged as the method of choice for profiling microRNAs.

Rating: 
Average: 5 (1 vote)

isomiR-Benchmark

Submitted by ChenLiang on Sun, 09/10/2017 - 17:10

MicroRNAs carry out post-transcriptional gene regulation in animals by binding to the 3' untranslated regions of mRNAs, causing their degradation or translational repression. MicroRNAs influence many biological functions, and dysregulation can therefore disrupt development or even cause death. High-throughput sequencing and the mining of animal small RNA data has shown that microRNA genes can yield differentially expressed isoforms, known as isomiRs.

Rating: 
Average: 5 (1 vote)

miRSeq

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) present diverse regulatory functions in a wide range of biological activities. Studies on miRNA functions generally depend on determining miRNA expression profiles between libraries by using a next-generation sequencing (NGS) platform. Currently, several online web services are developed to provide small RNA NGS data analysis. However, the submission of large amounts of NGS data, conversion of data format, and limited availability of species bring problems. In this study, we developed miRSeq to provide alternatives.

Rating: 
Average: 5 (1 vote)

isomiR2Function

Submitted by ChenLiang on Sun, 09/10/2017 - 17:11

In plants, post transcriptional regulation by non-coding RNAs (ncRNAs), in particular miRNAs (19-24 nt) has been involved in modulating the transcriptional landscape in developmental, biotic and abiotic interactions. In past few years, considerable focus has been leveraged on delineating and deciphering the role of miRNAs and their canonical isomiRs in plants. However, proper classification and accurate prediction of plant isomiRs taking into account the relative features by which we define isomiRs, such as templated or non-templated is still lacking.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to IsomiR