You are here

miRNA-Seq

MicroRNA sequencing (miRNA-seq), a type of RNA-Seq, is the use of next-generation sequencing or massively parallel high-throughput DNA sequencing to sequence microRNAs, also called miRNAs. miRNA-seq differs from other forms of RNA-seq in that input material is often enriched for small RNAs. miRNA-seq allows researchers to examine tissue-specific expression patterns, disease associations, and isoforms of miRNAs, and to discover previously uncharacterized miRNAs. [Source: Wikipedia]

Bowtie

Submitted by ChenLiang on Thu, 04/06/2017 - 17:15

Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds.

Rating: 
Average: 5 (1 vote)

Maq

Submitted by ChenLiang on Thu, 04/06/2017 - 17:13

New sequencing technologies promise a new era in the use of DNA sequence. However, some of these technologies produce very short reads, typically of a few tens of base pairs, and to use these reads effectively requires new algorithms and software. In particular, there is a major issue in efficiently aligning short reads to a reference genome and handling ambiguity or lack of accuracy in this alignment. Here we introduce the concept of mapping quality, a measure of the confidence that a read actually comes from the position it is aligned to by the mapping algorithm.

Rating: 
Average: 5 (1 vote)

BWA

Submitted by ChenLiang on Thu, 04/06/2017 - 17:10

The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently.

Rating: 
Average: 5 (1 vote)

GenMiR++

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We demonstrate that paired expression profiles of microRNAs (miRNAs) and mRNAs can be used to identify functional miRNA-target relationships with high precision. We used a Bayesian data analysis algorithm, GenMiR++, to identify a network of 1,597 high-confidence target predictions for 104 human miRNAs, which was supported by RNA expression data across 88 tissues and cell types, sequence complementarity and comparative genomics data.

Rating: 
Average: 5 (1 vote)

DSAP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform.

Rating: 
Average: 5 (1 vote)

miRDeep*

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format.

Rating: 
5
Average: 5 (2 votes)

omiRas

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNA deep sequencing is widely used to characterize non-coding RNAs (ncRNAs) differentially expressed between two conditions, e.g. healthy and diseased individuals and to reveal insights into molecular mechanisms underlying condition-specific phenotypic traits. The ncRNAome is composed of a multitude of RNAs, such as transfer RNA, small nucleolar RNA and microRNA (miRNA), to name few.

Rating: 
Average: 5 (1 vote)

CPSS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Next generation sequencing (NGS) techniques have been widely used to document the small ribonucleic acids (RNAs) implicated in a variety of biological, physiological and pathological processes. An integrated computational tool is needed for handling and analysing the enormous datasets from small RNA deep sequencing approach.

Rating: 
Average: 5 (1 vote)

CAP-miRSeq

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRNAs play a key role in normal physiology and various diseases. miRNA profiling through next generation sequencing (miRNA-seq) has become the main platform for biological research and biomarker discovery. However, analyzing miRNA sequencing data is challenging as it needs significant amount of computational resources and bioinformatics expertise. Several web based analytical tools have been developed but they are limited to processing one or a pair of samples at time and are not suitable for a large scale study.

Rating: 
Average: 5 (1 vote)

Oasis

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Oasis is a web application that allows for the fast and flexible online analysis of small-RNA-seq (sRNA-seq) data. It was designed for the end user in the lab, providing an easy-to-use web frontend including video tutorials, demo data and best practice step-by-step guidelines on how to analyze sRNA-seq data. Oasis' exclusive selling points are a differential expression module that allows for the multivariate analysis of samples, a classification module for robust biomarker detection and an advanced programming interface that supports the batch submission of jobs.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRNA-Seq