You are here

Regulatory Network

A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo). [Source: Wikipedia]

starBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleavage sites, respectively.

Rating: 
5
Average: 5 (2 votes)

Argonaute

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) constitute a recently discovered class of small non-coding RNAs that regulate expression of target genes either by decreasing the stability of the target mRNA or by translational inhibition. They are involved in diverse processes, including cellular differentiation, proliferation and apoptosis. Recent evidence also suggests their importance for cancerogenesis. By far the most important model systems in cancer research are mammalian organisms.

Rating: 
Average: 5 (1 vote)

TransmiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are therefore important cellular components. As is true for protein-coding genes, the transcription of miRNAs is regulated by transcription factors (TFs), an important class of gene regulators that act at the transcriptional level. The correct regulation of miRNAs by TFs is critical, and increasing evidence indicates that aberrant regulation of miRNAs by TFs can cause phenotypic variations and diseases.

Rating: 
Average: 5 (1 vote)

GenMiR++

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We demonstrate that paired expression profiles of microRNAs (miRNAs) and mRNAs can be used to identify functional miRNA-target relationships with high precision. We used a Bayesian data analysis algorithm, GenMiR++, to identify a network of 1,597 high-confidence target predictions for 104 human miRNAs, which was supported by RNA expression data across 88 tissues and cell types, sequence complementarity and comparative genomics data.

Rating: 
Average: 5 (1 vote)

MAGIA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof.

Rating: 
Average: 5 (1 vote)

CircuitsDB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Transcription Factors (TFs) and microRNAs (miRNAs) are key players for gene expression regulation in higher eukaryotes. In the last years, a large amount of bioinformatic studies were devoted to the elucidation of transcriptional and post-transcriptional (mostly miRNA-mediated) regulatory interactions, but little is known about the interplay between them.

Rating: 
Average: 5 (1 vote)

GraphWeb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Deciphering heterogeneous cellular networks with embedded modules is a great challenge of current systems biology. Experimental and computational studies construct complex networks of molecules that describe various aspects of the cell such as transcriptional regulation, protein interactions and metabolism. Groups of interacting genes and proteins reflect network modules that potentially share regulatory mechanisms and relate to common function. Here, we present GraphWeb, a public web server for biological network analysis and module discovery.

Rating: 
Average: 5 (1 vote)

ChIPBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity.

Rating: 
Average: 5 (1 vote)

SNMNMF

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

It is well known that microRNAs (miRNAs) and genes work cooperatively to form the key part of gene regulatory networks. However, the specific functional roles of most miRNAs and their combinatorial effects in cellular processes are still unclear. The availability of multiple types of functional genomic data provides unprecedented opportunities to study the miRNA-gene regulation. A major challenge is how to integrate the diverse genomic data to identify the regulatory modules of miRNAs and genes.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Regulatory Network